References
References that support the information provided in this ebook are listed below:
1. Aquarium Nitrification Revisited: Thaumarchaeota Are the Dominant Ammonia Oxidizers in Freshwater Aquarium Biofilters, Sauder LA, Engel K, Stearns JC, Masella AP, Pawliszyn R, Neufeld JD, PLos One, 20110811, http://www.aquaworldaquarium.com/edu/AquariumNitrificationRevisited.pdf
2. Ecophysiological Characterization of Ammonia-Oxidizing Archaea and Bacteria from Freshwater, Elizabeth French, Jessica A. Kozlowski, Maitreyee Mukherjee, George Bullerjahn, Annette Bollmanna, Miami University, Department of Microbiology, Oxford, Ohio, USA, and Bowling Green State University, Department of Biological Sciences, Bowling Green, Ohio, USA, Applied and Environmental Microbiology, August 2012 Volume 78 Number 16, 20120608, https://doi.org/10.1128/AEM.00432-12
3. Identification of Bacteria Responsible for Ammonia Oxidation in Freshwater Aquaria, Aul C. Burrell, Carol M. Phalen, AND Timothy A. Hovanec, Aquatic Research Laboratory, The Aquaria Group, Moorpark, California 93021, 20010925, American Society for Microbiology, Vol. 67, No. 12, https://doi.org/10.1128/AEM.67.12.5791-5800.2001
4. Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient, Thomas E. Freitag, Lisa Chang, James I. Prosser, Society for Applied Microbiology, 20060308, https://doi.org/10.1111/j.1462-2920.2005.00947.x
5. Prevalence of ammonia-oxidizing bacteria over ammonia-oxidizing archaea in sediments as related to nutrient loading in Chinese aquaculture ponds, Zijun Zhou, Hui Li, Chunlei Song, Xiuyun Cao & Yiyong Zhou, Journal of Soils and Sediments, 20170118, https://doi.org/10.1007/s11368-017-1651-2
6. Dr. Tim Hovanec: How to harness bacteria to cycle your saltwater tank quickly! | MACNA 2019, BRStv, YouTube, https://youtu.be/zDI7sxqC-ss
7. Ammonia distribution and excretion in fish, David J. Randall, Patricia A. Wright, Department of Zoology, University of British Columbia, Vancouver, B.C., V6T2A9, Kugler Publications, Amsterdam/Berkeley, Fish Physiology and Biochemistry vol. 3 no. 3 pp 107-120 (1987), https://www.ecowin.org/pdf/documents/Randall_wright_1987_ammonia_fish.pdf, https://doi.org/10.1007/BF02180412
8. Improving water quality does not guarantee fish health: Effects of ammonia pollution on the behaviour of wild-caught pre-exposed fish, Patricia Soler, Melissa Faria, Carlos Barata, Eduardo García-Galea, Beatriz Lorente, Dolors Vinyoles, PLOS ONE, 20210809, https://doi.org/10.1371/journal.pone.0243404
9. Compensatory responses in common carp (Cyprinus carpio) under ammonia exposure: Additional effects of feeding and exercise, Marjan Diricx, Amit Kumar Sinha, Hon Jung Liew, Nathalie Mauroa, Ronny Blust, Gudrun De Boeck, 20131015, Elsevier - Aquatic Toxicology, https://doi.org/10.1016/j.aquatox.2013.08.007
10. Nitrospira-Like Bacteria Associated with Nitrite Oxidation in Freshwater Aquaria, Timothy A. Hovanec, Lance T. Taylor, Andrew Blakis, Edward F. Delong, Applied and Environmental Microbiology, 19980101, Vol. 64, No. 1, https://doi.org/10.1128/AEM.64.1.258-264.1998
11. Complete nitrification by Nitrospira bacteria, Daims, H., Lebedeva, E., Pjevac, P. et al., Nature, 20151126, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5152751/, https://doi.org/10.1038/nature16461
12. Nitrite Toxicosis In Freshwater Fish, Dr. Melanie Greeley, Purdue University, Spring 1998 Newsletter, https://www.addl.purdue.edu/newsletters/1998/spring/nitrate.shtml
13. Nitrite Toxicity Affected By Species Susceptibility, Environmental Conditions, Global Seafood Alliance, Claude E. Boyd, Ph. D., 20140102, https://www.globalseafood.org/advocate/nitrite-toxicity-affected-by-species-susceptibility-environmental-conditions/
14. Nitrite influence on fish: a review, H. Kroupova, J. Machova, Z. Svobodova, Vet. Med. - Czech, 50, 2005 (11): 461-471, https://www.agriculturejournals.cz/publicFiles/61325.pdf
15. Simultaneous exposure to nitrate and low pH reduces the blood oxygen-carrying capacity and functional performance of a freshwater fish, Daniel F Gomez Isaza, Rebecca L Cramp, and Craig E Franklin, University of Queensland, Oxford Academic Published 20200123, https://doi.org/10.1093/conphys/coz092
16. Nitrate Removal from Ground Water: A Review, Surinder K. Sharma, and Ranbir Chander Sobti, Hindawi Journal of Chemistry, 2012 Vol. 9 Article ID 154616, http://www.aquaworldaquarium.com/edu/NitrateRemovalfromGroundWater.pdf, https://doi.org/10.1155/2012/154616
17. Denitrification and Biodiversity of Denitrifiers in a High-Mountain Mediterranean Lake, Antonio Castellano-Hinojosa, David Correa-Galeote, Presentación Carrillo, Eulogio J. Bedmar, Juan M. Medina-Sánchez, Frontiers in Microbiology, 20171006, https://doi.org/10.3389/fmicb.2017.01911
18. Aquatic Toxicity of Magnesium sulfate, and the Influence of Calcium, in Very Low Ionic Concentration Water, Rick A. Van Dam, Alicia C. Hogan, Cherie D. McCullough, Melanie A. Houston, Chris L. Humphrey, and Andrew J. Harford, SETAC Press, Environmental Toxicology and Chemistry, Vol. 29, No. 2, pp. 410-421, 2010, www.interscience.wiley.com, 20091104, https://setac.onlinelibrary.wiley.com/doi/pdf/10.1002/etc.56. http://www.aquaworldaquarium.com/edu/AquaticToxicityofMagnesiumSulfate.pdf
19. Calcium and magnesium use in aquaculture, Claude E. Boyd, Ph.D., School of Fisheries, Aquaculture and Aquatic Sciences Auburn University, Global Seafood Alliance, 20150911, https://www.globalseafood.org/advocate/calcium-and-magnesium-use-in-aquaculture/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA
20. Aquatic Toxicity of Magnesium sulfate, and the Influence of Calcium, in Very Low Ionic Concentration Water, Rick A. Van Dam, Alicia C. Hogan, Cherie D. McCullough, Melanie A. Houston, Chris L. Humphrey, and Andrew J. Harford, SETAC Press, Environmental Toxicology and Chemistry, Vol. 29, No. 2, pp. 410-421, 2010, www.interscience.wiley.com, 20091104, https://setac.onlinelibrary.wiley.com/doi/pdf/10.1002/etc.56. http://www.aquaworldaquarium.com/edu/AquaticToxicityofMagnesiumSulfate.pdf
21. Calcium and magnesium use in aquaculture, Claude E. Boyd, Ph.D., School of Fisheries, Aquaculture and Aquatic Sciences Auburn University, Global Seafood Alliance, 20150911, https://www.globalseafood.org/advocate/calcium-and-magnesium-use-in-aquaculture/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA
22. Magnesium chloride or magnesium sulfate: a genuine question, J. Durlach, A. Guiet-Bara, N. Pagès, P. Bac, M. Bara, Magnesium Research 2005; 18 (3): 187-92, 20050101, http://www.aquaworldaquarium.com/edu/MGCL220vs20MgSO4.pdf
23. Translation and Guidance on Application of the Montana Narrative Water Quality Criterion for Sulfate, Montana Department of Environmental Quality, Amy Steinmetz, 20140914, Rev. 20190118, http://www.aquaworldaquarium.com/edu/Translation%20and%20Guidance%20on%20Application%20of%20the%20Montana%20Narrative%20Water%20Quality%20Criterion%20for%20Sulfate.pdf
24. Treatment of diplomonad intestinal parasites with magnesium sulphate at a commercial rainbow trout (Oncorhynchus mykiss) facility, ophie St-Hilaire, Derek Price, Shawna Taylor, and David Groman, Canadian Veterinary Medical Association, 20150801, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502860/, http://www.aquaworldaquarium.com/edu/TreatmentofDiplomonadIntestinalParasiteswithMagnesiumSulphate.pdf
25. Calcium and magnesium use in aquaculture, Claude E. Boyd, Ph.D., School of Fisheries, Aquaculture and Aquatic Sciences Auburn University, Global Seafood Alliance, 20150911, https://www.globalseafood.org/advocate/calcium-and-magnesium-use-in-aquaculture/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA
26. The Effect of Calcium Hardness on Hatching Success of Channel Catfish x Blue Catfish Hybrid Catfish Eggs, Nagaraj G. Chatakondi and Eugene L. Torrans, North American Journal of Aquaculture 74:306-309, 2012, 20120613, https://doi.org/10.1080/15222055.2012.676003, https://www.researchgate.net/publication/254319973_The_Effect_of_Calcium_Hardness_on_Hatching_Success_of_Channel_Catfish_Blue_Catfish_Hybrid_Catfish_Eggs
27. Salmonid Embryo Development and Pathology, G. Russell Danner, Maine Department of Inland Fisheries & Wildlife, American Fisheries Society Symposium 65:37-58, 20080101, https://fisheries.org/docs/books/54065P/3.pdf, http://www.aquaworldaquarium.com/edu/SalmonidEmbryoDevelopmentandPathology.pdf
28. A preliminary investigation of some chemical and physical profiles of Lake Tanganyika, Felicity Smith, The Nyanza Project, 2001 Annual Report, University of Arizona, p. 55-58, https://www.geo.arizona.edu/nyanza/pdf/smith.pdf, http://www.aquaworldaquarium.com/edu/LakeTanganyikaWaterChemistry.pdf
29. Hydrochemistry (major and trace elements) of Lake Malawi (Nyasa), P. Branchu, L. Bergonzini, J.-P. Ambrosi, D. Cardinal, M. Delalande, E. Pons-Branchu, and M. Benedetti, Hydrology and Earth System. Sciences Discussions., 7, 4371-4409, 20100707, https://hess.copernicus.org/preprints/7/4371/2010/hessd-7-4371-2010.pdf, http://www.aquaworldaquarium.com/edu/LakeMalawiWaterChemistry.pdf
30. Transport, signaling, and homeostasis of potassium and sodium in plants, Eri Adams,Ryoung Shin, Wiley Online Library/Journal of Integrative Plant Biology, 20140107, https://doi.org/10.1111/jipb.12159
31. Salty freshwater macrophytes: the effects of salinization in freshwaters upon non-halophyte aquatic plants, Mauricio Hoffmann Moreira, Ng Haig They, Lúcia Ribeiro Rodrigues, Luna Alvarenga-Lucius, Alice Pita-Barbosa, Science of The Total Environment, Volume 857, Part 3, 20221021, 159608, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2022.159608
32. Requirements of shrimp, Penaeus chinensis O'sbeck for potassium, sodium, magnesium and iodine, Liu Fa-yi, Li He-fang, Wang Hui-liang, Liang De-hai & Tian Yu-chuan, Chinese Journal of Oceanology and Limnology volume 13, pages141-146 (1995), 19950601, https://doi.org/10.1007/BF02846819
33. Angstrom Sciences, Elements Electrical Conductivity Reference Table, https://www.angstromsciences.com/elements-electrical-conductivity
34. Aakash +Byjus - Heterotrophic Bacteria - https://byjus.com/neet/heterotrophic-bacteria/#:~:text=of%20heterotrophic%20bacteria%3F-,Heterotrophic%20bacteria%20derive%20energy%20from%20organic%20compounds.,%2C%20nitrogen%2Dfixation%2C%20etc
35. Aakash +Byjus - Autotrophic Bacteria - https://byjus.com/neet/autotrophic-bacteria/#:~:text=Autotrophic%20bacteria%20synthesize%20their%20own,to%20supplement%20their%20energy%20requirements.
36. Hydrogen sulfide toxic, but manageable, Claude E. Boyd, Ph.D., Global Seafood Alliance, 20140302, https://www.globalseafood.org/advocate/hydrogen-sulfide-toxic-but-manageable/#:~:text=Toxicity,them%20more%20susceptible%20to%20disease.
37. Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments, S. Ramamoorthy, H. Sass, H. Langner, P. Schumann, R. M. Kroppenstedt, S. Spring, J. Overmann, R. F. Rosenzweig, Microbiology Society, Internation Journal of Systematic and Evolutionary Microbiology, Vol. 56, Issue 12, 20061201, https://doi.org/10.1099/ijs.0.63610-0
38. Oxidation of hydrogen sulfide by Thiobacilli, Patricia Cadenhead, Kerry L. Sublette, Biotechnology and Bioengineering, Vol. 35 Issue 11, 19900501, https://doi.org/10.1002/bit.260351111
39. Aerobic oxidation of hydrogen sulfide by Thiobacillus denitrificans, Kerry L. Subletta, Biotechnology and Bioengineering, Vol. 29 Issue 6, 19870420, https://doi.org/10.1002/bit.260290605
40. Removal of hydrogen sulfide by complete aerobic oxidation in acidic biofiltration, Sumate Chaiprapat, Rohana Mardthing, Duangporn Kantachote, Seni Karnchanawong, Process Biochemistry, Volume 46, Issue 1, 20110101, Pages 344-352, https://doi.org/10.1016/j.procbio.2010.09.007
41. Anaerobic oxidation of dissolved hydrogen sulfide in continuous culture of the chemoautotrophic bacterium Thiobacillus denitrificans, Takashima T, Fukunishi N, Nishiki T, Konishi Y, CHERIC, KAGAKU KOGAKU RONBUNSHU, Vol.28, No.1, 25-30, 2002, https://www.cheric.org/research/tech/periodicals/view.php?seq=1019141
42. Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp., T Brinkhoff, G Muyzer, ASM Journals - Applied and Environmental Microbiology, Vol. 63, No. 10, 19911001, https://doi.org/10.1128/aem.63.10.3789-3796.1997
43. The Methanogenic Bacteria, Mah, R.A., Smith, M.R., The Prokaryotes, 1981, https://doi.org/10.1007/978-3-662-13187-9_76
44. Oxygenation of methane by methane-grown Pseudomonas methanica and Methanomonas methanooxidans, I. J. Higgins, J. R. Quayle; Biochem Journal, 19700601; 118 (2): 201-208, https://doi.org/10.1042/bj1180201
45. Bacteria in Drinking Water, Published by University Extension, University of Missouri-System, 19950401, https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/52687/wq0102-1995.pdf?sequence=1, http://www.aquaworldaquarium.com/edu/BacteriaInDrinkingWater.pdf
46. Aquaponics Food Production Systems (Springer International Publishing, January 2019, ISBNs 978-3-03-015942-9, 978-3-03-015943-6, Authors: Proksch, Gundula, Ianchenko, Alex, Kotzen, Benz, Eck, Mathilde, Körner, Oliver, Jijakli, Haissam, Goddek, Simon, Joyce, Alyssa, Burnell, Gavin M., Editors: Simon Goddek, Alyssa Joyce, Benz Kotzen, Gavin M. Burnell). http://www.aquaworldaquarium.com/edu/AquaponicsFoodProductionSystems.pdf
47. Microorganisms in recirculating aquaculture systems and their management, Eugene Rurangwa, Marc C.J. Verdegem, Wiley Online Library, 20140224, https://doi.org/10.1111/raq.12057
48. Nitrate and phosphate levels positively affect the growth of algae species found in Perry Pond, STEFFII FRIED, BRENDAN MACKIE, and ERIN NOTH, Grinnell College, Tillers 2003 Vol 4, https://digital-grinnell.nyc3.cdn.digitaloceanspaces.com/ojs-static/tillers/article/view/33/33, http://www.aquaworldaquarium.com/edu/NitrateAndPhosphate_PerryPond.pdf
49. Evidence for a Nutritional Role of Iodine in Plants, Kiferle C, Martinelli M, Salzano AM, Gonzali S, Beltrami S, Salvadori PA, Hora K, Holwerda HT, Scaloni A and Perata P, 20210217, https://doi.org/10.3389/fpls.2021.616868
50. Reconciling Water Quality Parameters Impacting Nitrification in Aquaponics: The pH Levels, Tyson, Richard V., Eric H. Simonne, James M. White, and Elizabeth M. Lamb, In Proceedings of the Florida State Horticultural Society, vol. 117, pp. 79-83. 2004. http://www.aquaworldaquarium.com/edu/ReconcilingWaterQualityParametersThepHLevel.pdf
51. Aquaponics Food Production Systems, Springer International Publishing, January 2019, ISBNs 978-3-03-015942-9, 978-3-03-015943-6, Authors: Proksch, Gundula, Ianchenko, Alex, Kotzen, Benz, Eck, Mathilde, Körner, Oliver, Jijakli, Haissam, Goddek, Simon, Joyce, Alyssa, Burnell, Gavin M., Editors: Simon Goddek, Alyssa Joyce, Benz Kotzen, Gavin M. Burnell. http://www.aquaworldaquarium.com/edu/AquaponicsFoodProductionSystems.pdf
52. Influence of potassium supply on growth and nutrient storage by water hyacinth, Reddy, K., Agami, M., D'Angelo, E., & Tucker, J. (1991), Bioresource Technology, 37(1), 79-84. ScienceDirect, https://doi.org/10.1016/0960-8524(91)90114-Y
53. The effect of anaerobic sediment on the growth of Potamogeton pectinatus L.: the role of organic matter, sulphide and ferrous iron, Carla van Wijck, Cornelis-Jan de Groot, Patrick Grillas, Aquatic Botany, Volume 44, Issue 1, 19921201, Pages 31-49, https://doi.org/10.1016/0304-3770(92)90079-X
54. Absorption of iron and growth of Hydrilla verticillata (L.F.) Royle, Fouad M. Basiouny, L.A. Garrard, W.T. Haller, Aquatic Botany, Volume 3, 1977, Pages 349-356, https://doi.org/10.1016/0304-3770(77)90039-0
55. Aeration as a tool to improve water quality and reduce the growth of Hydrilla, Water Research, 14(5), 485-489. 1980, https://doi.org/10.1016/0043-1354(80)90214-6
56. Iron supplementation and management in aquaponic systems: A review, Nasser Kasozi, Roman Tandlich, Martin Fick, Horst Kaiser, Brendan Wilhelmi, Aquaculture Reports, Volume 15, 20191003, https://doi.org/10.1016/j.aqrep.2019.100221
57. Photodegradation of FeDTPA in Nutrient Solutions. I. Effects of Irradiance, Wavelength, and Temperature, Joseph P. Albano, William B. Miller, HortScience, 20010401, https://doi.org/10.21273/HORTSCI.36.2.313
58. Microbial diversity in different compartments of an aquaponics system, Schmautz, Z., Graber, A., Jaenicke, S. et al., Archives of Microbiology 199, 613-620 (2017). https://doi.org/10.1007/s00203-016-1334-1
59. Dr. Tom Barr, The Barr Report, 20060309, https://barrreport.com/threads/equilibrium-co2-in-water.1689/post-8832
60. Transport, signaling, and homeostasis of potassium and sodium in plants, Eri Adams,Ryoung Shin, Wiley Online Library/Journal of Integrative Plant Biology, 20140107, https://onlinelibrary.wiley.com/doi/full/10.1111/jipb.12159
61. Sensitivity of annual Medicago species to manganese toxicity as affected by calcium and pH, AD Robson and JF Loneragan Australian Journal of Agricultural Research, 1970, https://doi.org/10.1071/AR9700223
62. Aquaponic production of strawberries and their mineral and sugar composition when supplemented with or without boron and cultured with or without media, Nicholas Romano, Hayden Fischer, Research Square, https://doi.org/10.21203/rs.3.rs-1939072/v1
63. Oxygen Release from Roots of Submerged Aquatic Macrophytes, Kaj Sand-Jensen, Claus Prahl and Hans Stokholm, Oikos: 349-54, 19820501, https://doi.org/10.2307/3544675
64. Red-Rimmed Melania (Melanoides tuberculatus) - A Snail in Biscayne National Park, Florida - Harmful Invader or Just a Nuisance, G. Lynn Wingard, James B. Murray, W. Bane Schill, and Emily C. Phillips, U.S. Geological Survey, 20080501, http://www.aquaworldaquarium.com/edu/MTS.pdf.
65. Some Factors in the Competition or Antagonism Among Bacteria, Algae, and Aquatic Weeds, George P. Fitzgerald, Journal of Phycology, 19691201, https://doi.org/10.1111/j.1529-8817.1969.tb02625.x
66. Influences of nine algal species isolated from duckweed-covered sewage miniponds on Lemna gibba L., Sándor Szabó, Mihály Braun, Sándor Balázsy, Otto Reisinger, Aquatic Botany, Volume 60, Issue 2, 1998, Pages 189-195, https://doi.org/10.1016/S0304-3770(97)00080-6
67. Toxic potential of five freshwater Phormidium species (Cyanoprokaryota), Ivanka Teneva, Balik Dzhambazov, Lyubka Koleva, Rumen Mladenov, Kristin Schirmer, Toxicon, Volume 45, Issue 6, 20050501, https://doi.org/10.1016/j.toxicon.2005.01.018
68. Denitrification, Roger Knowles, Microbiological Reviews, 19820301, p. 43-70, Vol. 46, No. 1, Department of Microbiology, Macdonald Campus of McGill University, Ste. Anne de Bellevue, Quebec H9X JCO, Canada, http://www.aquaworldaquarium.com/edu/Denitrification_R_Knowles.pdf
69. Hydrogenotrophic denitrification of potable water: A review, K.A. Karanasios, I.A. Vasiliadou, S. Pavlou, D.V. Vayenas, Journal of Hazardous Materials, Volume 180, Issues 1-3, 20100815, Pages 20-37, https://doi.org/10.1016/j.jhazmat.2010.04.090
70. Development of an aquaponics microbial inoculum for efficient nitrification at acidic pH. Derikvand, P., Sauter, B. & Stein, L.Y. Appl Microbiol Biotechnol 105, 7009-7021, 20200828,. https://doi.org/10.1007/s00253-021-11529-y
71. Removal of Agrichemicals from Water Using Granular Activated Carbon Filtration, George A. Grant, Paul R. Fisher, James E. Barrett & Patrick C. Wilson, 20191218, https://doi.org/10.1007/s11270-018-4056-y